Author Archives: admin

Drivers to benefit from £20 million EV chargepoint boost

Drivers will have better access to electric vehicle chargepoints across the country, through a new pilot backed by £20 million of government and industry funding announced today (24 August 2022).

Through the innovative Local EV Infrastructure (LEVI) pilot scheme, local authorities and industry will work together to create new, commercial EV charging infrastructure for residents, from faster on-street chargepoints to larger petrol station-style charging hubs.

The rollout supports the government’s drive to encourage more motorists to go electric, which can save drivers money on fuel and running costs, and improve air quality as the country moves towards net zero.

The winners of the pilot fund are:

  • Barnet
  • Dorset
  • Durham
  • Kent
  • Midlands Connect (with Lincolnshire as a lead authority)
  • North Yorkshire
  • Nottinghamshire
  • Suffolk
  • Warrington

The funding is expected to deliver over 1,000 public chargepoints across the areas.

The scheme will help residents without private driveways to have better access to EV chargers, as well as growing the charging network across the country, supporting the nation’s uptake of zero emission vehicles and enabling more people to drive and charge without fear of being caught short, no matter where they are.

The pilot is backed by £10 million of government funding shared among the 9 winning local authorities in the first tranche of the planned £450 million scheme, with winning pilot bids supported by an additional £9 million in private funding. A further £1.9 million will come from public funds across local authorities.

Decarbonisation Minister Trudy Harrison said:

We want to expand and grow our world-leading network of EV chargepoints, working closely with industry and local government, making it even easier for those without driveways to charge their electric vehicles and support the switch to cleaner travel.

This scheme will help to level up electric vehicle infrastructure across the country, so that everyone can benefit from healthier neighbourhoods and cleaner air.

Edmund King OBE, AA president, said:

It is essential that more on-street chargers are delivered to boost the transition to zero emission vehicles for those without home charging.

This injection of an extra £20 million funding will help bring power to electric drivers across England from Durham to Dorset. This is one further positive step on the road to electrification.

RAC head of roads policy Nicholas Lyes said:

We know that there are many drivers who do not have driveways or any form of off-street parking, so investing in streetside charging is an absolute necessity. Drivers can also look forward to the prospect of local charging hubs which will give them somewhere to quickly charge their vehicles without needing to drive any considerable distance. The goal must be to spark electric vehicle uptake by creating an excellent charging infrastructure that caters for everyone’s needs.

The scheme will allow local authorities to provide feedback on how to grow the network and the role the private sector can play.

The new LEVI fund builds on the success of the On-Street Residential Chargepoint Scheme (ORCS) which has seen nearly 2,900 chargepoints installed so far with funding provided for approaching 10,000 additional chargepoints in the future.

Following growing demand from local authorities, we’re also announcing a further £10 million in funding which has been brought forward for this year, bringing this year’s ORCS funding to £30 million to help maintain ongoing installations.

New Electricity Networks Commissioner appointed to help ensure home-grown energy for Britain

Nick Winser CBE is appointed today (6 July 2022) as the UK’s first Electricity Networks Commissioner, in the government’s latest step to ensure secure, clean and affordable British energy for the long term.

Earlier this year, the UK government set out ambitious targets to boost UK energy generation from clean technologies, such as offshore wind and nuclear reactors. Accelerating the country’s domestic supply of clean and affordable electricity will help to drive down bills and increase energy independence – but this also requires new network infrastructure to support it.

Nick’s new role as Electricity Networks Commissioner will be pivotal in helping ensure the right infrastructure, such as electricity poles and transmission lines, are in the right places so clean, British-generated electricity can flow to households across the country.

This includes dramatically reducing timelines for delivering onshore transmission network infrastructure by around 3 years and developing recommendations to help halve the end-to-end project process by the mid-2020s.

Nick has extensive experience in the electricity networks field spanning 30 years, and in advising government and industry on energy policy. He is currently chairman of the Energy Systems Catapult.

Nick’s appointment follows recent announcements of Simon Bowen as industry advisor for Great British Nuclear, and Tim Pick as the government’s Offshore Wind Champion to further boost the UK energy mix for generations to come.

Business and Energy Secretary Kwasi Kwarteng said:

I am delighted to appoint Nick Winser as the UK’s first Electricity Networks Commissioner.

Nick will play a pivotal role in ensuring the right network infrastructure is in the right places to ensure households can benefit from our abundant supply of clean, affordable, home-grown energy.

Newly appointed Electricity Networks Commissioner Nick Winser said:

Electricity networks are essential to transporting new low carbon power generation, such as that from offshore wind and nuclear, to where it is needed, in homes and businesses across the country, where it will be used more and more for new purposes like charging electric vehicles and heating households through heat pumps.

I look forward to taking on this important new role where I can help accelerate the delivery of new electricity transmission infrastructure, helping to provide consumers with a secure, reliable, supply of green electricity, while keeping costs as low as possible.

Wiring Matters – Issue 90 – May 2022

Lets take a look at what is in the May 2022 issue of Wiring Matters (Issue 90)

BS 7671: Chapter 42 – Protection against fire

With the introduction of the 15th Edition of the IEE Wiring Regulations in 1981 the UK aligned the requirements of the regulations with the International Electrotechnical Commission (IEC) worldwide electrical installation standard IEC 60364.

Coming up: Guide to Earthing and Bonding for AC Electrified Railways

We think readers of Wiring Matters will be interested in the forthcoming publication from IET Codes & Guidance. Guide to Earthing and Bonding for AC Electrified Railways aims to assist infrastructure owners, railway designers and installation contractors in adopting a harmonised approach towards earthing and bonding design philosophy for 25 kV railway infrastructure.

Draft for Public Comment coming soon: Code of Practice for Grid-connected Solar Photovoltaic Systems, 2nd Edition

We are happy to announce that in the coming weeks we will be sending Code of Practice for Grid-connected Solar Photovoltaic Systems, 2nd Edition out for its consultation period.

We want to hear from you

With the introduction of BS 7671:2018+A2:2022 and the updates to the associated publications that come with that, we want to hear from you, our readers. Do you have a question you want answered in a forthcoming article, or maybe you have a particular area that deserves an investigation by our team? Do you want to debate a point made in the past by one of our articles?

Five reasons to get a heat pump

It is now cheaper than ever to install cleaner, more energy efficient heating solutions thanks to the government’s new £450 million Boiler Upgrade Scheme.

Homeowners and small businesses across England and Wales can now apply for vouchers to get thousands of pounds off replacing their oil and gas boilers with clean heating systems.

Under the scheme, which will run for 3 years, property owners will be able to get:

  • £5,000 off the cost and installation of an air source heat pump
  • £5,000 off the cost and installation of a biomass boiler
  • £6,000 off the cost and installation of a ground source heat pump

Phil Hurley, Chair of the Heat Pump Association said:

The Boiler Upgrade Scheme is a great opportunity for householders to make their home more energy efficient and we encourage anyone thinking about switching out their oil or gas boiler to make use of the grants.

The upfront funding available means that heat pumps have never been more accessible, making it easier than ever for households to reduce their energy bills and carbon footprint.

Here are 5 reasons why you should consider swapping your oil or gas boiler, or direct electric heating, for a heat pump:

1. Reduce your energy bills

Moving to a heat pump means you can avoid the volatile prices associated with gas and oil. If you are using oil, Liquefied Petroleum Gas (LPG) or electric heating, you could see a reduction to your energy bill if you move to a heat pump.

2. No VAT to pay on installation

The government has recently announced 0% VAT on the installation of heat pumps and biomass boilers, which will last for 5 years, further reducing the cost of installation.

3. Reduce your carbon footprint and combat climate change

Heat pumps are significantly more efficient than traditional boilers and use cleaner electricity, so will reduce your home’s carbon footprint. A heat pump takes heat at a low temperature from the air or ground, increases that heat to a higher temperature and transfers it into your home to provide heating and hot water.

4. Save time and storage space by stopping fuel deliveries

If you’re using oil or LPG, you’ll no longer need to deal with fuel deliveries and can save space with not needing the storage for this anymore.

5. Get ahead of the curve

Heat pumps are an important part of the future of heating, and installing one now will give you access to the latest technology and allow you to future proof your home.

Check if you are eligible for the scheme or find out more.

How does Nuclear energy in the UK work ? [ANSWERED]

Why nuclear power?

In light of high global gas prices, we need to ensure Britain’s future energy supply is bolstered by reliable, affordable, low carbon power that is generated in this country.

New nuclear is not only an important part of our plans to ensure greater energy independence, but to create high-quality jobs and drive economic growth.

Large-scale nuclear is a very low-carbon technology, which provides the reliable baseload power we need at scale from a very small land area; Hinkley Point C, for example, will power around 6 million homes from a just a quarter of a square mile.

Is nuclear power safe?

Yes. As confirmed by the UN’s International Atomic Energy Agency, nuclear power plants ‘are among the safest and most secure facilities in the world,’ and nuclear power is one of the safest forms of energy generation.

For context, the annual radiation dose to an adult living beside a new nuclear plant is much less than taking one trans-Atlantic flight or eating 100g of Brazil nuts – neither of which have heavy radiation.

In the UK, we have a well-respected regulatory system which reflects international best practice, and an industry which places an extremely high value on safety, achieving world-leading health and safety standards every time it is examined.

Nuclear power has operated in the UK for decades without incident, and all UK nuclear operators are answerable to robust and independent regulators – the Office for Nuclear Regulation (ONR) and the appropriate environmental regulator. If the ONR judged that any nuclear installation was not safe or secure it would not be allowed to operate.

How does nuclear power work?

Traditional nuclear power plants use heat produced during nuclear fission to produce steam. The steam is used to spin large turbines that generate electricity. Nuclear power plants heat water.

In nuclear fission, atoms are split apart to form smaller atoms, releasing energy. Fission takes place inside the reactor of a nuclear power plant. At the centre of the reactor is the core, which contains uranium fuel split into ceramic pellets.

Each ceramic pellet produces about the same amount of energy as 150 gallons of oil. These energy-rich pellets are stacked end-to-end in 12-foot metal fuel rods. A bundle of fuel rods, some with hundreds of rods, is called a fuel assembly. A reactor core contains many fuel assemblies.

Both the Committee on Climate Change and the International Energy Agency have highlighted the role for new nuclear electricity generating capacity, in partnership with renewables, as a key element of achieving net zero. A recent report by the UN Economic Commission for Europe was clear that “the world’s climate objectives will not be met if nuclear technologies are excluded” from future decarbonisation.

What about nuclear waste disposal?

The government is committed to using Geological Disposal Facilities (GDF) to dispose of nuclear waste.

GDF is internationally recognised as the best long-term solution for dealing with radioactive waste.

We need a sustainable solution for the radioactive waste that has already accumulated over many decades. It’s currently stored safely in facilities around the UK, but this isn’t a long term solution and we will be moving towards geological disposal for new and existing waste.

Local engagement events are underway for local people to find out more about a GDF and what it would mean for the community that hosts it.

A GDF is a multi-billion-pound infrastructure investment and will provide skilled jobs and benefits to the community that hosts it for more than 100 years. It is also likely to involve major investments in local transport facilities and other infrastructure.

What is the government currently doing to support nuclear power?

The strategy will see a significant acceleration of nuclear, with an ambition of up to 24GW by 2050 to come from this safe, clean, and reliable source of power. This would represent up to around 25% of our projected electricity demand. Subject to technology readiness from industry, Small Modular Reactors will form a key part of the nuclear project pipeline.

A new government body, Great British Nuclear, will be set up immediately to bring forward new projects, backed by substantial funding, and we will launch the £120 million Future Nuclear Enabling Fund this month. We will work to progress a series of projects as soon as possible this decade, including Wylfa site in Anglesey. This could mean delivering up to 8 reactors, equivalent to one reactor a year instead of one a decade, accelerating nuclear in Britain.

We are committed to building the first new nuclear power station in a generation at Hinkley Point C in Somerset, which will provide 3.2 GW of secure, low carbon electricity for around 60 years to power around 6 million homes and provide 25,000 job opportunities.

EDF are the lead investor building Hinkley Point C. They are targeting the first reactor coming online in June 2026. The developer is fully funding the project.

We have been in constructive negotiations on the Sizewell C project in Suffolk since January 2021, as the most advanced potential project in the UK. If approved Sizewell C would be a replica of Hinkley Point C, providing electricity for 6 million homes, and creating thousands of high value jobs nationwide.

In January we provided £100 million of funding for the Sizewell C developer to invest in the project to help bring it to maturity, attract investors, and advance to the next phase in negotiations.

As set out in the 2021 Spending Review, up to £1.7 billion of funding is available to support approval of at least one new nuclear power plant this Parliament.

The Nuclear Energy (Financing) Act received Royal Assent last week. The Act will enable use of the Regulated Asset Base funding model for new nuclear projects, which will unblock obstacles to developing these projects and cut the cost of financing them.

The Advanced Nuclear Fund  includes up to £210 million announced in November 2021 for Rolls-Royce to develop the design for one of the world’s first Small Modular Reactors. This could be deployed in the UK in the early 2030s to turbocharge UK nuclear capacity.

We are also establishing a new Future Nuclear Enabling Fund of up to £120 million to provide targeted support for new nuclear and make it easier for new companies to enter the market.  

What are Small Modular Reactors (SMRs)?

Small Modular Reactors are smaller versions of conventional water-cooled nuclear reactors. Designs come in different sizes but have power output roughly a fifth to a third of the larger and more traditional reactors at Hinkley Point C.

There are a wide range of new reactor technologies under development around the world. Many designs have the potential for a range of applications beyond low-carbon electricity generation, including production of hydrogen, direct heat for industrial or domestic use or nuclear waste management.

The UK government believes that SMRs could play an important role alongside large nuclear as a low-carbon energy source to support a secure, affordable decarbonised energy system. They can be easily manufactured away from the sites where they are used and deployed where needed and could be a transformative technology for the UK’s industrial heartlands.

What are Advanced Modular Reactors (AMRs)?

AMRs are the next generation of nuclear power. These reactors use novel and innovative fuels, coolants, and technologies to generate extreme heat for industrial applications as well as for electricity to power people’s homes.

They take advantage of the same modular-building principles as SMRs, making them more flexible to deploy.

We have committed up to £385 million in the Advanced Nuclear Fund (ANF) to support SMRs and AMR development. This includes up to £210 million awarded as a grant to Rolls-Royce SMR to develop their SMR design, which will be matched by industry.

This fund will be part of the measures the government will take to inform investment decisions during the next Parliament on further nuclear projects.

The ANF also includes funding for progressing plans for an ambitious Advanced Modular Research, Development & Demonstration (RD&D) programme which aims to enable an AMR demonstration by the early 2030s, at the latest. We recently announced that High Temperature Gas Reactors (HTGRs) will be the technology focus for this programme.

How long does it take for a nuclear plant to come online?

The timeframe for new nuclear projects coming online varies considerably depending on a range of factors.

Large-scale nuclear projects do have long-construction periods, but Small Modular Reactors for example could be deployable during the early 2030s, with innovation in manufacturing and construction having the potential to bring down build time further.

What’s happening to the older nuclear power stations?

EDF, which operates all of the UK’s Advanced Gas-cooled Reactors (AGRs) as well as Sizewell B, have extended the lifetime of many of the power stations built in the 1970s and ‘80s in the UK.

However, when nuclear stations reach the end of their generating capability, they move into the next phase of their lives which is to remove the fuel and to prepare for decommissioning.

This process is handled by the Nuclear Decommissioning Authority (NDA), a government agency with high-level technical expertise in handling this process in a safe and secure manner.

There are currently 6 generating stations across England and Scotland operated by EDF Energy. Sizewell B, the UK’s only Pressurised Water Reactor, is expected to continue generation past 2028.

The AGR stations at Torness, Hinkley Point B, Heysham 1, Heysham 2 and Hartlepool will end generation between 2022 and 2028.

Two other AGR stations, Dungeness B and Hunterston B, recently ended generation to move into the final defueling phase and then decommissioning.

In terms of future use for these sites, the NDA have a clear mission to safely decommission them, freeing up land for future uses.

The NDA welcomes engagement from all stakeholders with a potential future use of land and have a history of engagement and land transfer across their portfolio.